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Abstract
The elastostatic Green function tensor approach, which was recently used to
treat electrostriction in the numerical simulation of domain structure formation
in cubic ferroelectrics, is reviewed and extended to the crystals of hexagonal and
orthorhombic symmetry. The tensorial kernels appearing in the expressions for
effective nonlocal interaction of electrostrictive origin are derived explicitly and
their physical meaning is illustrated by simple examples. It is argued that the
bilinear coupling between the polarization gradients and elastic strain should
be systematically included in the Ginzburg–Landau free energy expansion of
electrostrictive materials.

1. Introduction

Technological advancements in ferroelectric materials have triggered interest in the kinetics of
domain pattern formation and its description by the time-dependent Ginzburg–Landau (TDGL)
model. Since the basic TDGL model (with just a few polynomials in homogeneous order
parameter and a single gradient term in its free energy functional) was found useful in many
areas of physics [1–6], its solutions are nowadays known with a remarkable amount of detail
and mathematical rigour [7]. However, the quantitative understanding of ferroelectric domain
structure properties requires the addition of extra terms accounting for the contribution of
long-range interactions of an electric and elastic nature [8–15]. While this extension is quite
straightforward and provides a considerable potential for realistic simulations of domain pattern
evolution, macroscopic ferroelectric and piezoelectric response, impact of defects, finite size
effects and so on, it also brings new technical problems.

The crucial difficulty of this extended TDGL model consists in dealing with the elastic
field controlled by the inhomogeneous polarization due to the electrostrictive coupling.
The full approach would require the simultaneous solution of both coupled equations of motion
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(for both elastic and polarization fields). The standard approach to the problem [14–18] consists
in the elimination of the elastic degrees of freedom with the help of the mechanical equilibrium
conditions. This leads to an effective interaction term Fhet depending explicitly on the order
parameter (polarization P (x)) only. Such an effective term is then added to the Landau–
Devonshire free energy functional instead of the elastic and the electrostrictive terms and one
is left with a single equation of motion for the polarization field only.

A technical drawback of the approach is that the resulting effective energy term is nonlinear
and nonlocal. Moreover, if the real space integration is preserved, the elastic properties of the
medium come in the formula through the anisotropic elastostatic Green functions for which
only complicated integral expressions are known. Nevertheless, at least for some purposes, the
explicit expressions for anisotropic elastostatic Green functions can be avoided by expressing
the interaction Fhet in terms of Fourier components of polarization. The Fourier representation
is particularly convenient in the case of modulated ferroelectrics, where the polarization has
the form of a single plane wave [14], but it is extremely useful even in the case of 3D domain
structures [11, 12]. In the Fourier representation, the elastic properties appear in the expression
for Fhet through a tensorial kernel Bi jkl(n). This tensorial kernel is a fourth-order tensor angular
function comprising all necessary information about the electrostrictive and elastic properties
of the material. The elastic properties of the medium are introduced in Bi jkl(n) solely via the
so-called elastic Green function tensor [17], which is a much more simple object than the (real
space) elastic Green function itself.

In some cases, the exact form of the tensorial kernel Bi jkl(n) could be reasonably
approximated by that of the elastically isotropic medium [17, 18]. Some time ago, however,
the components of Bi jkl(n) in general cubic crystals were derived explicitly [11] and the fully
anisotropic Fhet was then successfully used in realistic 2D and 3D simulations [11, 12, 19]
of domain structure coarsening in perovskite ferroelectrics. The objective of this work is
the extension of this technique, which may be called the ‘elastostatic Green function tensor
technique’, to the crystals of lower symmetry.

For the sake of clarity, we have introduced the notation and the approach leading to the
expressions for effective energy contribution Fhet in section 2. The explicit expressions known
for cubic crystals [11] are generalized to the case of orthorhombic and hexagonal symmetries
in section 3. Section 4 is devoted to the basic electrostriction (without gradient terms). The
Fhet is expressed in terms of a polarization autocorrelation tensor and the physical meaning of
the Ai jkl tensor introduced in [11] is discussed in detail. Finally, the role of gradient terms in
the systematic expansion of electrostrictive energy is elucidated in section 5.

2. Elimination of elastic degrees of freedom

The excess Gibbs free energy functional describing an elastically linear ferroelectric in a
general polarization and stress state can be expressed as a sum of three terms:

F = F0{Pi , Pi, j } + F1{Pi , Pi, j , ui j} + F2{ui j}, (1)

where Pi ,Pi, j stands for the i th Cartesian component of the polarization field and for its j th
spatial derivative, and ui j is the i j component of the (infinitesimal) strain field.

The first part F0{Pi , Pi, j } may be further divided into an integral of the basic local Landau
free energy density fL, the Ginzburg (gradient) energy density fG, depending on spatial
derivatives of P (x), and the contribution of the dipole–dipole interaction Fdip:

F0{Pi , Pi, j } = Fdip +
∫

( fL + fG) dx. (2)
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The electrostrictive energy F1{Pi , Pi, j , ui j } can be expressed as an integral over electrostriction
density fes, which is by definition linear in the elastic strain field ui j(x):

F1{Pi , Pi, j , ui j } =
∫

fes dx, fes = −gi j ui j , (3)

where the leading term in the expansion of coefficient gi j

gi j = gi j(Pi , Pi, j ) = qi jkl Pk Pl + · · · (4)

is just given by the usual electrostriction tensor qi jkl . Note that the Einstein summation rule is
assumed in this paper. The last term, the proper elastic energy, is merely a quadratic function
of the elastic strain field

F2{ui j} =
∫

(pi jui j + fela) dx, fela = 1
2 Ci jkl ui j ukl . (5)

In this case the total stress σi j(x) can be divided into three contributions—thermal stress pi j ,
describing for example the common thermal dilatation, purely elastic stress Ci jkl ukl and the
proper electrostrictive tensile stress field gi j originating from coupling to the polarization field:

σi j (x) = ∂ f

∂ui j
= pi j + Ci jklukl − gi j . (6)

In static problems or in dealing with slow processes like domain structure formation, the
inhomogeneous elastic strain can often be eliminated by means of static equilibrium conditions.
The local stress equilibrium condition σi j, j = 0 can be considered as a second-order partial
differential equation for a displacement field u(x):

Ci jkl
∂2uk

∂x j∂xl
= ∂gi j

∂x j
. (7)

This condition defines u(r) up to a linear form (homogeneous strain). Let us first consider
a macroscopically clamped crystal with a large volume V , where the homogeneous strain is
zero. In principle, the solution to equation (7) satisfying

ūi j ≡ 〈ui j (x)〉 ≡ 1

V

∫
V

ui j(x) dx = 0, (8)

can be found using the corresponding anisotropic elastostatic Green function G(x) defined by

Ci jkl
∂2Gkm

∂x j∂xl
= δ(x)δim, (9)

where δ(x) and δi j are Dirac and Kronecker deltas.
At the same time, the formal solution for k �= 0 Fourier components follows immediately

from equation (7):

u(k) ≡ 〈u(x) exp(−ikx)〉 = i�(n̂) · g(k) · k

k2
, (10)

where n̂ is the unit vector such that k = kn̂,

gi j(k) ≡ 〈gi j(x) exp(−ikx)〉 (11)

are the Fourier components of the electrostrictive tensile stress field gi j(x) and the Green
function tensor [17] �(n̂) is the inverse of the Christoffel (acoustical [20]) tensor �(n̂):

(�(n̂)−1)i j = �i j(n̂) ≡ Ci jkl n̂k n̂l . (12)

Assuming a Born–Kármán-like boundary conditions on the volume V , the inverse Fourier
transform provides the heterogeneous strain field as [14]

ũi j(x) =
∑
k �=0

iki u j(k) exp(ikx). (13)
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The k vectors involved in the summation form a discrete set spread homogeneously over
the whole Brillouin zone with density V/(2π)3. In fact, only the long wave contributions
should be essential (theory assumes smooth inhomogeneity or thick enough domain walls)
since otherwise the long wavelength elasticity considered in equation (5) is not adequate. By
inserting the formal solution equation (13) back into equation (1), we obtain the searched
effective interaction term Fhet = F1 + F2 for a macroscopically clamped system in the
form [11, 16, 17]

Fhet = − V

2

∑
k �=0

∑
i jkl

n̂i gi j(k)� jk(n̂)gkl(−k)n̂l

= − V

2

∑
k �=0

n̂ · g(k) · �(n̂) · g(−k) · n̂, (14)

which does not depend on the elastic strain field anymore. The integrand (summand) of
equation (14) is a bilinear form in Fourier-transformed tensor components gi j(k). It is thus
possible to use the Voigt abbreviated subscript notation [21] for Ci jkl and for gi j :

g1 = g11, g2 = g22, g3 = g33,

g4 = g23, g5 = g13, g6 = g12,
(15)

and rewrite equation (14) in a compact form [11] (hereafter the Greek indices go always from
1 to 6):

Fhet = − V

2

∑
k �=0

gα(k)Bαβ(n̂)gβ(−k). (16)

The nonlocal character of this effective interaction is more apparent after returning back to the
real space:

Fhet = −1

2

∫
V

∫
V

g̃i j(x
′)

∂2Gkl (x
′ − x′′)

∂x j∂xm
g̃lm(x′′) dx′ dx′′ (17)

where g̃i j = gi j −〈gi j〉 is the heterogeneous part of the electrostrictive field gi j. This expression
shows that the Bαβ tensorial kernel is actually a Fourier-transformed Hessian of the elastostatic
Green function G(x) defined in equation (9).

Finally, the total strain field under general macroscopic equilibrium conditions is

ui j(x) = ūi j + ũi j (x), (18)

where ũi j(x) is given by equation (13) and ūi j is the homogeneous component defined by the
left-hand side of equation (8). For example, the free sample condition σ̄i j = 0 leads to the
equilibrium value (see equation (6))

ūi j = Si jkl(ḡkl − pkl), (19)

where Si jkl = (C−1)i jkl is the matrix of elastic compliances. Substitution of equation (18)
back into the original potential in equation (1) provides F1 + F2 = Fhet + Fhom where

Fhom = − V

2
(ḡα − pα)Sαβ(ḡβ − pβ) (20)

and Fhet is just the same as for the case of a clamped crystal (equations (14) and (17)).
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3. Elastostatic Green function tensor for cubic, hexagonal and orthorhombic crystals

Provided that the explicit dependence of the electrostrictive tensile stress gi j on polarization
field appearing in equation (16) is known, the effective energy term Fhet can be calculated from
equation (14), (16) or (17). Obviously, in some cases [22] it is worth tackling the problem [23]
of the calculation of the Green function derivatives appearing in equation (17) explicitly, while
in other cases it is possible to avoid it [11, 12, 18, 19] and use equation (14) or (16). For
example, it was shown [12, 19] that simulations of domain structure coarsening described by
the TDGL equations (including the above effective interaction term Fhet) can be performed
entirely in the Fourier space.

In this paragraph, we will concentrate on properties of the elastic Green function tensor
�i j(n̂) and the 6 × 6 matrix of the tensorial kernel Bαβ(n̂) appearing in equation (16). In
order to avoid numerical inversion of the Christoffel tensor (equation (12)) at each wavevector
direction n̂, several authors have derived explicit formulae for the cubic symmetry Green
function tensor �i j(n̂). Among them, the approach of [11] is the most suitable here since it
allows for generalization to the case of hexagonal and orthorhombic symmetry. The essential
step consists in expressing �i j as a sum of a diagonal part d j(n̂) and a tensorial square of a
convenient real vector v:

�i j (n̂) = d j(n̂)δi j + viv j . (21)

This is trivial in cubic crystals where obviously [11]

vi = (C12 + C44)n̂i , (22)

di = C44 + (C11 − C12 + C44)n̂
2
i . (23)

The decomposition is not so straightforward for the crystals of lower symmetry. Nevertheless,
for example in the case of an orthorhombic elastic medium with

C23 > −C44, C13 > −C55, C12 > −C66, (24)

(which is a very weak assumption since practically all known crystals have all the off-diagonal
elements C12, C13 and C23 positive), the Christoffel tensor is given by equation (21) with

v1 = n̂1

√
(C12 + C66)(C13 + C55)

(C23 + C44)
,

v2 = n̂2

√
(C23 + C44)(C12 + C66)

(C13 + C55)
,

v3 = n̂3

√
(C13 + C55)(C23 + C44)

(C12 + C66)
,

(25)

d1 = C11n̂2
i + C66n̂2

2 + C55n̂2
3 − v2

1,

d2 = C44n̂2
i + C22n̂2

2 + C44n̂2
3 − v2

2,

d3 = C55n̂2
i + C44n̂2

2 + C33n̂2
3 − v2

3 .

(26)

Obviously, the above decomposition can be used also for hexagonal crystals; it is sufficient to
put C55 = C44, C22 = C11, C23 = C13 and 2C66 = C11 − C12.

For arbitrary crystal symmetry, once the explicit expressions for vi and di are known, the
Green function tensor �i j is obtained directly using the lemma from the appendix:

�i j(n̂) = δi j

d j
− viv j

di d j

(
1 +

3∑
k=1

v2
k

dk

)−1

. (27)



5760 J Hlinka and E Klotins

The tensorial kernel Bαβ then is

Bαβ(n̂) = βαβ − θαθβ

(
1 +

3∑
k=1

v2
k

dk

)−1

, (28)

where

θ1 = n̂1v1/d1, θ2 = n̂2v2/d2, θ3 = n̂3v3/d3,

θ4 = n̂2v3/d3 + n̂3v2/d2, θ5 = n̂1v3/d3 + n̂3v1/d1,

θ6 = n̂2v1/d1 + n̂1v2/d2,

(29)

modifies equation (4.16) used in [11] for cubic crystals and the components of the {βαβ} tensor:


n̂2
1

d1
0 0 0 n̂3n̂1

d1

n̂2n̂1
d1

0 n̂2
2

d2
0 n̂3n̂2

d2
0 n̂1n̂2

d2

0 0 n̂2
3

d3

n̂2n̂3
d3

n̂1n̂3
d3

0

0 n̂3n̂2
d2

n̂2n̂3
d3

n̂2
2

d3
+ n̂2

3
d2

n̂1n̂2
d3

n̂1n̂3
d2

n̂3n̂1
d1

0 n̂1n̂3
d3

n̂1n̂2
d3

n̂2
1

d3
+ n̂2

3
d1

n̂3n̂2
d1

n̂2n̂1
d1

n̂1n̂2
d2

0 n̂1n̂3
d2

n̂2n̂3
d1

n̂2
2

d1
+ n̂2

1
d2




(30)

as a function of di simply coincide with those given previously for cubic crystals in
equation (4.15) of [11].

Let us note that, in the rare cases when some of the denominators in equation (25) would
become zero [20] or negative, the method works equally well. It is sufficient to modify these
equations in order to express the Christoffel matrix in the form assumed in the appendix.

4. Basic electrostriction in crystal of arbitrary symmetry class

In this section, we will assume that the electrostrictive tensile stress gi j is a bilinear form of
polarization components:

gi j(x) = qi jkl Pk(x)Pl(x), (31)

where qi jkl is the usual electrostrictive tensor, symmetric both in the first and second pair of
indexes. In all crystal symmetry classes, at least some of the components are nonzero. Since
it is also the lowest-order term in non-piezoelectric materials, most of the phenomenological
models are limited just to that term [11, 12, 14, 18, 22]. In this case, it is convenient to
introduce [11] an autocorrelation tensor Yi j(k):

Yi j (k) ≡ 〈Pi (x)Pj(x) exp(−ikx)〉, (32)

which is nothing else but a convolution of corresponding Fourier components of the polarization
field:

Yi j (k) =
∑
k′

Pi (k
′)Pj (k − k′). (33)

The heterogeneous effective energy term Fhet then is [11]

Fhet = − V

2

∑
k �=0

Yα(k)Aαβ(n̂)Yβ(−k). (34)

where Aαδ(n̂) = qαβ Bβγ (n̂)qγ δ now depends on both elastic and electrostrictive material
constants.
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Let us now assume that the sample contains a single planar domain wall perpendicular
to a fixed direction n̂0. Then we can keep only P (k) and Yα(k) with k ‖ n̂0 so that
Aαβ(n̂) = Aαβ(n̂0) can be taken in front of the summation symbol in equation (34):

Fhet = − V

2
Aαβ(n̂0)

[∑
k

Yα(k)Yβ(k) − Yα(0)Yβ(0)

]
. (35)

Let us further assume, for example, a 180◦ domain wall with P1, P3 = 0, so that only Y2(k)

contributes. The Einstein summation in the above expression then reduces to a single term:

Fhet = − V

2
A22(n̂0)[〈P4

1 〉 − 〈P2
1 〉2], (36)

where 〈 〉 stands for the spatial average as defined in equation (8).
Since the polarization field comes in equation (36) via the spatial mean square deviation

of P2
2 , it is apparent that the nonzero contributions to Fhet comes only from the region in the

vicinity of the domain wall. Our example thus allows us to give a clear interpretation to the
Aαβ(n̂0) tensor function. For a fixed domain wall profile, its angular dependence defines how
the electrostrictive reduction of the domain wall energy varies with domain wall orientation
n̂0 and its tensorial components distinguish various types of domain walls according to the
associated change in polarization direction. Obviously, in a well-coarsened domain pattern,
where the polarization inhomogeneities are limited to the domain wall regions, the Fhet again
become effectively local functionals, but depending on density, type and orientation of domain
walls.

Incommensurate structures with modulated polarization represent another transparent case
of 1D inhomogeneity where equation (35) holds. Actually, it was shown [14] that the Frel term
is essential for explanation of the dielectric anomalies of incommensurate ferroelectric NaNO2.
In the ideal case of uniaxial sinusoidal modulation with P1, P3 = 0 and wavevector k0 ‖ n̂0,
there is only a single nonzero pair of Fourier components of polarization {P2(k0), P2(−k0)}
so that

Fhet = −V A2,2(n̂0)[P1(k0)P1(−k0)]2, (37)

As noted previously [14], this expression does not depend explicitly on the modulation
wavevector and thus it does not vanish in the k0 → 0 limit. In fact, this observation is
not so surprising in the present context, since it follows from the fact that the volume ratio
between ‘domain walls’ and ‘domains’ is fixed by the sinusoidal profile of the modulation.
Naturally, if one assumes that, with decreasing k0, the modulation becomes of a more and
more ‘rectangular’ shape, the ‘gap’ between the energy of a homogeneous and modulated
ferroelectric would vanish in the k0 → 0 limit.

Finally, let us note that, in the case of 1D inhomogeneity with a fixed direction n̂0, the first
term on the right-hand side of equations (35) and (36) can actually be interpreted as a local
term, merely renormalizing fourth-order terms in the Landau–Devonshire potential FL. At the
same time, the second term, although nonlocal, depends on polarization in the same way as
the Fhom.

5. Gradient electrostriction

Since the elastostatic Green function tensor technique described in section 2 was developed
for dealing with inhomogeneous polarization configurations, it is natural to include in the free
energy expansion terms depending on the spatial derivations of polarization. In principle,
consistent free energy expansion may require such terms not only in the expansion of F0,
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but also in the expansion of F1. Thus, instead of equation (31), one may need to assume (in a
crystal with a centrosymmetric paraelectric phase)

gi j = qi jkl Pk Pl + ri jkl
∂ Pk

∂xl
+ si jklmn

∂ Pk

∂xl

∂ Pm

∂xn
+ · · · . (38)

Let us demonstrate the role of this gradient electrostriction term in the case of a uniaxial
(P1, P3 = 0) ferroelectric with orthorhombic paraelectric phase. Due to the choice of easy
polarization direction and the obvious symmetry constraints, all nonzero terms in the gα(x)

expansion up to the second order in P = P2 and P, j = ∂ P/∂x j can be easily enumerated and
conveniently expressed using Voigt notation:

g1 = q12 P2 + r12 P,2 + s12i P2
,i ,

g2 = q22 P2 + r22 P,2 + s22i P2
,i ,

g3 = q32 P2 + r32 P,2 + s32i P2
,i ,

g4 = r44 P,3 + s442 P,3 P,2,

g5 = s564 P,1 P,3,

g6 = r66 P,1 + s662 P,1 P,2.

(39)

The Fourier components gα(k) are then

g1(k) = (q12 − s12i k
2
i )Y (k) − ir12k2 P(k),

g2(k) = (q22 − s22i k
2
i )Y (k) − ir22k2 P(k),

g3(k) = (q32 − s32i k
2
i )Y (k) − ir32k2 P(k),

g4(k) = −ir44k3 P(k) − s442k3k2Y (k) ,

g5(k) = −s564k1k3Y (k),

g6(k) = −ir66k1 P(k) − s662k1k2Y (k),

(40)

where we have used the autocorrelation tensor component Y (k) = Y2(k) defined previously
in equation (32).

The effective interaction Fhet can now be evaluated from equation (16). Let us examine the
case of 1D inhomogeneity where only P(k) with k ‖ n̂1 parallel to the crystallographic axis x1

is nonzero. Then, the only nonzero components of the Bαβ(n̂1) tensorial kernel (equation (28))
are

B11(n̂1) = 1

C11
, B55(n̂1) = 1

C55
, B66(n̂1) = 1

C66
, (41)

and the Fhet then reduces to a sum of two terms:

Fhet1 = − V

2

∑
k1 �=0

(q12 − s12i k2
i )

2

C11
Y (k1)Y (−k1), (42)

and

Fhet2 = − V

2

∑
k1 �=0

r2
66k2

1

C66
P(k1)P(−k1). (43)

The first term has the same form as the expression in equation (34), except for the fact that
the sαβγ coupling makes the generalized Aαβ tensor dependent also on the modulus of the k
vector. Therefore, the sαβγ tensor terms in equation (38) can be safely neglected (unless the
problem under study is drastically sensitive to the inhomogeneity length scale, as for example
at the lock-in phase transition in type-II incommensurate systems [14]).
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The second term given by equation (43) can be straightforwardly transformed to

Fhet2 = −1

2

r2
66

C66

∫
V

(
∂ P(x)

∂x1

)2

dx, (44)

so that it is apparent that this term renormalizes the coefficient of the lowest order gradient
term in the ‘Ginzburg part’ fG of the free-energy expansion (equation (1)). The experimental
studies of bilinear coupling between soft mode and acoustic branches by Brillouin and inelastic
neutron scattering techniques show that the ri jkl coupling term in equation (38) may indeed
cause an important renormalization of the Ginzburg term. Probably, more pronounced effects
are expected in crystals with a small Ginzburg term. It is even believed that in some crystals
this gradient electrostriction compensates the Ginzburg term completely, which leads to the
appearance of incommensurate modulated structure [24, 25]. Unfortunately, in the general
3D case, the effect of the ri jkl coupling term does not reduce to a simple renormalization of
coefficients in the Ginzburg free energy and the full anisotropy of Bαβ(n̂) tensorial kernel
should be taken into account.

6. Conclusion

The elastostatic Green function tensor technique presented here is concerned with the
simulation of the ferroelectric domain pattern, being a cutting edge problem both in the
theory of phase transitions and technological applications. We have found that this technique,
applied recently to electrostriction in ferroelectrics with a cubic paraelectric phase, can be
straightforwardly generalized to hexagonal and orthorhombic crystals. The contribution of
this approach is most valuable for orthorhombic crystals since they are far from isotropy and
the closed formulas for elastostatic Green functions are known only for a few very special
limit cases [20]. Unfortunately, the method outlined here is not very convenient for tetragonal,
trigonal and monoclinic symmetries since the v vector used in decomposition of the Christoffel
matrix would have a nontrivial angular dependence. We are not aware of any elegant method
for the inversion of a Christoffel matrix in such cases.

The essential effect of the nonlocal, nonlinear and anisotropic effective interaction term
Fhet consists in reduction of domain wall energies as a function of their orientation and the
associated change of polarization vector. This information is conveniently contained in the
tensor Aαβ(n̂) introduced in equation (34). Polar diagrams of the Aαβ(n̂) tensorial components
may thus be quite instructive for understanding the behaviour of a particular system.

Finally, the bilinear coupling between the polarization gradients and elastic strain should
not be overlooked in the realistic simulations. The values of the corresponding tensorial
coefficients ri jkl can be determined, for example, with the help of Brillouin and inelastic
neutron scattering techniques.
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Appendix

Let us suppose that a finite regular real symmetrical matrix A can be written as a sum of a
diagonal part D and a real multiple of a tensorial (dyadic) square v ⊗ v of a real vector v as

Ai j = (D + λv ⊗ v)i j = d jδi j + λviv j , (45)
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where λ is real. Let wi ≡ vi/di . Then the matrix inverse to A is

A−1 = D−1 − λw ⊗ w

1 + λv · w
, (46)

provided that the right-hand side of equation (46) exists. This can be easily proven by
multiplication of the expressions in equations (45) and (46).

In the case of orthorhombic, hexagonal and cubic crystals, the above result allows us to
find compact explicit expressions for the corresponding elastostatic Green function tensors.
For example, in equations (21) and (27), we have applied equation (46) with λ = 1.
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